Tree of Knowledge Wiki
Advertisement

The following is a list of unsolved problems grouped into broad areas of physics.

General physics/quantum physics[]

  • Arrow of time (e.g. entropy's arrow of time): Why does time have a direction? Why did the universe have such low entropy in the past, and time correlates with the universal (but not local) increase in entropy, from the past and to the future, according to the second law of thermodynamics? Why are CP violations observed in certain weak force decays, but not elsewhere? Are CP violations somehow a product of the second law of thermodynamics, or are they a separate arrow of time? Are there exceptions to the principle of causality? Is there a single possible past? Is the present moment physically distinct from the past and future, or is it merely an emergent property of consciousness? What links the quantum arrow of time to the thermodynamic arrow?
  • Interpretation of quantum mechanics: How does the quantum description of reality, which includes elements such as the superposition of states and wavefunction collapse or quantum decoherence, give rise to the reality we perceive? Another way of stating this question regards the measurement problem: What constitutes a "measurement" which apparently causes the wave function to collapse into a definite state? Unlike classical physical processes, some quantum mechanical processes (such as quantum teleportation arising from quantum entanglement) cannot be simultaneously "local", "causal", and "real", but it is not obvious which of these properties must be sacrificed, or if an attempt to describe quantum mechanical processes in these senses is a category error such that a proper understanding of quantum mechanics would render the question meaningless. Can a multiverse resolve it?
  • Grand Unification Theory/Theory of everything: Is there a theory which explains the values of all fundamental physical constants? Is there a theory which explains why the gauge groups of the standard model are as they are, and why observed spacetime has 3 spatial dimensions and 1 temporal dimension? Do "fundamental physical constants" vary over time? Are any of the fundamental particles in the standard model of particle physics actually composite particles too tightly bound to observe as such at current experimental energies? Are there fundamental particles that have not yet been observed, and, if so, which ones are they and what are their properties? Are there unobserved fundamental forces?
  • Yang–Mills theory: Given an arbitrary compact gauge group, does a non-trivial quantum Yang–Mills theory with a finite mass gap exist? (This problem is also listed as one of the Millennium Prize Problems in mathematics.)
  • Color confinement: Quantum chromodynamics (QCD) color confinement conjecture is that color charged particles (such as quarks and gluons) cannot be separated from their parent hadron without producing new hadrons. There is not yet an analytic proof of color confinement in any non-abelian gauge theory.
  • Physical information: Are there physical phenomena, such as wave function collapse or black holes, that irrevocably destroy information about their prior states? How is quantum information stored as a state of a quantum system?
  • Dimensionless physical constant: At the present time, the values of the dimensionless physical constants cannot be calculated; they are determined only by physical measurement. What is the minimum number of dimensionless physical constants from which all other dimensionless physical constants can be derived? Are dimensional physical constants necessary at all?
  • Fine-tuned Universe: The values of the fundamental physical constants are in a narrow range necessary to support carbon-based life. Is this because there exist other universes with different constants, or are our universe's constants the result of chance, or some other factor or process? In particular, Tegmark's mathematical multiverse hypothesis of abstract mathematical parallel universe formalized models, and the landscape multiverse hypothesis of spacetime regions having different formalized sets of laws and physical constants from that of the surrounding space — require formalization.
  • Quantum field theory: Is it possible to construct, in the mathematically rigorous framework of algebraic QFT, a theory in 4-dimensional spacetime that includes interactions and does not resort to perturbative methods?

Cosmology and general relativity[]

DMPie 2013

Estimated distribution of dark matter and dark energy in the universe

  • Dark matter: What is the identity of dark matter? Is it a particle? Is it the lightest superpartner (LSP)? Or, do the phenomena attributed to dark matter point not to some form of matter but actually to an extension of gravity?
  • Dark energy: What is the cause of the observed accelerated expansion (de Sitter phase) of the universe? Why is the energy density of the dark energy component of the same magnitude as the density of matter at present when the two evolve quite differently over time; could it be simply that we are observing at exactly the right time? Is dark energy a pure cosmological constant or are models of quintessence such as phantom energy applicable?
  • Dark flow: Is a non-spherically symmetric gravitational pull from outside the observable universe responsible for some of the observed motion of large objects such as galactic clusters in the universe?
  • Axis of evil: Some large features of the microwave sky at distances of over 13 billion light years appear to be aligned with both the motion and orientation of the solar system. Is this due to systematic errors in processing, contamination of results by local effects, or an unexplained violation of the Copernican principle?
  • Shape of the universe: What is the 3-manifold of comoving space, i.e. of a comoving spatial section of the universe, informally called the "shape" of the universe? Neither the curvature nor the topology is presently known, though the curvature is known to be "close" to zero on observable scales. The cosmic inflation hypothesis suggests that the shape of the universe may be unmeasurable, but, since 2003, Jean-Pierre Luminet, et al., and other groups have suggested that the shape of the universe may be the Poincaré dodecahedral space. Is the shape unmeasurable; the Poincaré space; or another 3-manifold?

Quantum gravity[]

  • Vacuum catastrophe: Why does the predicted mass of the quantum vacuum have little effect on the expansion of the universe?
  • Quantum gravity: Can quantum mechanics and general relativity be realized as a fully consistent theory (perhaps as a quantum field theory)? Is spacetime fundamentally continuous or discrete? Would a consistent theory involve a force mediated by a hypothetical graviton, or be a product of a discrete structure of spacetime itself (as in loop quantum gravity)? Are there deviations from the predictions of general relativity at very small or very large scales or in other extreme circumstances that flow from a quantum gravity theory?
  • Black holes, black hole information paradox, and black hole radiation: Do black holes produce thermal radiation, as expected on theoretical grounds? Does this radiation contain information about their inner structure, as suggested by gauge–gravity duality, or not, as implied by Hawking's original calculation? If not, and black holes can evaporate away, what happens to the information stored in them (since quantum mechanics does not provide for the destruction of information)? Or does the radiation stop at some point leaving black hole remnants? Is there another way to probe their internal structure somehow, if such a structure even exists?
  • Extra dimensions: Does nature have more than four spacetime dimensions? If so, what is their size? Are dimensions a fundamental property of the universe or an emergent result of other physical laws? Can we experimentally observe evidence of higher spatial dimensions?
  • The cosmic censorship hypothesis and the chronology protection conjecture: Can singularities not hidden behind an event horizon, known as "naked singularities", arise from realistic initial conditions, or is it possible to prove some version of the "cosmic censorship hypothesis" of Roger Penrose which proposes that this is impossible? Similarly, will the closed timelike curves which arise in some solutions to the equations of general relativity (and which imply the possibility of backwards time travel) be ruled out by a theory of quantum gravity which unites general relativity with quantum mechanics, as suggested by the "chronology protection conjecture" of Stephen Hawking?
  • Locality: Are there non-local phenomena in quantum physics? If they exist, are non-local phenomena limited to the entanglement revealed in the violations of the Bell inequalities, or can information and conserved quantities also move in a non-local way? Under what circumstances are non-local phenomena observed? What does the existence or absence of non-local phenomena imply about the fundamental structure of spacetime? How does this elucidate the proper interpretation of the fundamental nature of quantum physics?

High-energy physics/particle physics[]

See also: Beyond the Standard Model
  • Hierarchy problem: Why is gravity such a weak force? It becomes strong for particles only at the Planck scale, around 1019 GeV, much above the electroweak scale (100 GeV, the energy scale dominating physics at low energies). Why are these scales so different from each other? What prevents quantities at the electroweak scale, such as the Higgs boson mass, from getting quantum corrections on the order of the Planck scale? Is the solution supersymmetry, extra dimensions, or just anthropic fine-tuning?
  • Planck particle: The Planck mass plays an important role in parts of mathematical physics. A series of researchers have suggested the existence of a fundamental particle with mass equal to or close to that of the Planck mass. The Planck mass is however enormous compared to any detected particle. It is still an unsolved problem if there exist or even have existed a particle with close to the Planck mass. This is indirectly related to the hierarchy problem.
  • Magnetic monopoles: Did particles that carry "magnetic charge" exist in some past, higher-energy epoch? If so, do any remain today? (Paul Dirac showed the existence of some types of magnetic monopoles would explain charge quantization.)
  • Proton decay and spin crisis: Is the proton fundamentally stable? Or does it decay with a finite lifetime as predicted by some extensions to the standard model? How do the quarks and gluons carry the spin of protons?
  • Supersymmetry: Is spacetime supersymmetry realized at TeV scale? If so, what is the mechanism of supersymmetry breaking? Does supersymmetry stabilize the electroweak scale, preventing high quantum corrections? Does the lightest supersymmetric particle (LSP or Lightest Supersymmetric Particle) comprise dark matter?
  • Generations of matter: Why are there three generations of quarks and leptons? Is there a theory that can explain the masses of particular quarks and leptons in particular generations from first principles (a theory of Yukawa couplings)?
  • Neutrino mass: What is the mass of neutrinos, whether they follow Dirac or Majorana statistics? Is the mass hierarchy normal or inverted? Is the CP violating phase equal to 0?
  • Colour confinement: Why has there never been measured a free quark or gluon, but only objects that are built out of them, such as mesons and baryons? How does this phenomenon emerge from QCD?
  • Strong CP problem and axions: Why is the strong nuclear interaction invariant to parity and charge conjugation? Is Peccei–Quinn theory the solution to this problem? Could axions be the main component of dark matter?
  • Anomalous magnetic dipole moment: Why is the experimentally measured value of the muon's anomalous magnetic dipole moment ("muon g-2") significantly different from the theoretically predicted value of that physical constant?
  • Proton radius puzzle: What is the electric charge radius of the proton? How does it differ from gluonic charge?
  • Pentaquarks and other exotic hadrons: What combinations of quarks are possible? Why were pentaquarks so difficult to discover? Are they a tightly-bound system of five elementary particles, or a more weakly-bound pairing of a baryon and a meson?
  • Mu problem: problem of supersymmetric theories, concerned with understanding the parameters of the theory.
  • Koide formula: An aspect of the problem of particle generations. The sum of the masses of the three charged leptons, divided by the square of the sum of the roots of these masses is , to within one standard deviation of observations. It is unknown how such a simple value comes about, and why it is the exact arithmetic average of the possible extreme values of ​13 (equal masses) and 1 (one mass dominates).

Astronomy and astrophysics[]

Main articles: List of unsolved problems in astronomy
  • Astrophysical jet: Why do only certain accretion discs surrounding certain astronomical objects emit relativistic jets along their polar axes? Why are there quasi-periodic oscillations in many accretion discs? Why does the period of these oscillations scale as the inverse of the mass of the central object? Why are there sometimes overtones, and why do these appear at different frequency ratios in different objects?
  • Diffuse interstellar bands: What is responsible for the numerous interstellar absorption lines detected in astronomical spectra? Are they molecular in origin, and if so which molecules are responsible for them? How do they form?
  • Supermassive black holes: What is the origin of the M-sigma relation between supermassive black hole mass and galaxy velocity dispersion? How did the most distant quasars grow their supermassive black holes up to 1010 solar masses so early in the history of the universe?
GalacticRotation2

Rotation curve of a typical spiral galaxy: predicted (A) and observed (B). Can the discrepancy between the curves be attributed to dark matter?

  • Kuiper cliff: Why does the number of objects in the Solar System's Kuiper belt fall off rapidly and unexpectedly beyond a radius of 50 astronomical units?
  • Flyby anomaly: Why is the observed energy of satellites flying by planetary bodies sometimes different by a minute amount from the value predicted by theory?
  • Galaxy rotation problem: Is dark matter responsible for differences in observed and theoretical speed of stars revolving around the centre of galaxies, or is it something else?
  • Supernovae: What is the exact mechanism by which an implosion of a dying star becomes an explosion?
  • p-nuclei: What astrophysical process is responsible for the nucleogenesis of these rare isotopes?
  • Ultra-high-energy cosmic ray: Why is it that some cosmic rays appear to possess energies that are impossibly high, given that there are no sufficiently energetic cosmic ray sources near the Earth? Why is it that (apparently) some cosmic rays emitted by distant sources have energies above the Greisen–Zatsepin–Kuzmin limit?
  • Rotation rate of Saturn: Why does the magnetosphere of Saturn exhibit a (slowly changing) periodicity close to that at which the planet's clouds rotate? What is the true rotation rate of Saturn's deep interior?
  • Origin of magnetar magnetic field: What is the origin of magnetar magnetic field?
  • Large-scale anisotropy: Is the universe at very large scales anisotropic, making the cosmological principle an invalid assumption? The number count and intensity dipole anisotropy in radio, NRAO VLA Sky Survey (NVSS) catalogue is inconsistent with the local motion as derived from cosmic microwave background and indicate an intrinsic dipole anisotropy. The same NVSS radio data also shows an intrinsic dipole in polarization density and degree of polarization in the same direction as in number count and intensity. There are several other observation revealing large-scale anisotropy. The optical polarization from quasars shows polarization alignment over a very large scale of Gpc. The cosmic-microwave-background data shows several features of anisotropy, which are not consistent with the Big Bang model.
  • Space roar: Why is space roar six times louder than expected? What is the source of space roar?
  • Age–metallicity relation in the Galactic disk: Is there a universal age–metallicity relation (AMR) in the Galactic disk (both "thin" and "thick" parts of the disk)? Although in the local (primarily thin) disk of the Milky Way there is no evidence of a strong AMR, a sample of 229 nearby "thick" disk stars has been used to investigate the existence of an age–metallicity relation in the Galactic thick disk, and indicate that there is an age–metallicity relation present in the thick disk. Stellar ages from asteroseismology confirm the lack of any strong age-metallicity relation in the Galactic disc.
  • The lithium problem: Why is there a discrepancy between the amount of lithium-7 predicted to be produced in Big Bang nucleosynthesis and the amount observed in very old stars?
  • Ultraluminous pulsar: The ultraluminous X-ray source M82 X-2 was thought to be a black hole, but in October 2014 data from NASA's space-based X-ray telescope NuStar indicated that M82 X-2 is a pulsar 1 to 2 times brighter than the Eddington limit. How can this pulsar remain stable, and how did it form?
  • Fast radio bursts: Transient radio pulses lasting only a few milliseconds, from emission regions thought to be no larger than a few hundred kilometres, and estimated to occur several hundred times a day. While several theories have been proposed, there is no generally accepted explanation for them. The only known repeating FRB emanates from a galaxy roughly 3 billion light years from Earth.

Nuclear physics[]

Island-of-Stability

The "island of stability" in the proton vs. neutron number plot for heavy nuclei

Atomic, molecular and optical physics[]

Classical mechanics[]

  • Singular trajectories in the Newtonian N-body problem: Does the set of initial conditions for which particles that undergo near-collisions gain infinite speed in finite time have measure zero? This is known to be the case when N = 4, but the question remains open for larger N.

Condensed matter physics[]

BI2223-piece3 001

A sample of a cuprate superconductor (specifically BSCCO). The mechanism for superconductivity of these materials is unknown.

FQHE Hall

Magnetoresistance in a fractional quantum Hall state.

Plasma physics[]

  • Plasma physics and fusion power: Fusion energy may potentially provide power from abundant resource (e.g. hydrogen) without the type of radioactive waste that fission energy currently produces. However, can ionized gases (plasma) be confined long enough and at a high enough temperature to create fusion power? What is the physical origin of H-mode?
  • Solar cycle: How does the Sun generate its periodically reversing large-scale magnetic field? How do other solar-like stars generate their magnetic fields, and what are the similarities and differences between stellar activity cycles and that of the Sun? What caused the Maunder Minimum and other grand minima, and how does the solar cycle recover from a minima state?
  • Coronal heating problem: Why is the Sun's corona (atmosphere layer) so much hotter than the Sun's surface? Why is the magnetic reconnection effect many orders of magnitude faster than predicted by standard models?
  • The injection problem: Fermi acceleration is thought to be the primary mechanism that accelerates astrophysical particles to high energy. However, it is unclear what mechanism causes those particles to initially have energies high enough for Fermi acceleration to work on them.
  • Solar wind interaction with comets: In 2007 the Ulysses spacecraft passed through the tail of comet C/2006 P1 (McNaught) and found surprising results concerning the interaction of the solar wind with the tail.

Biophysics[]

  • Memory: How is long-term memory stored on a biological substrate undergoing constant turnover?

Science Frontiers Sourcebook Project[]

Books published by William R. Corliss include:

  • Mysteries of the Universe (1967)
  • Mysteries Beneath the Sea (1970)
  • Strange Phenomena: A Sourcebook of Unusual Natural Phenomena (1974)
  • Strange Artifacts: A Sourcebook on Ancient Man (1974)
  • The Unexplained (1976)
  • Strange Life (1976)
  • Strange Minds (1976)
  • Strange Universe (1977)
  • Handbook of Unusual Natural Phenomena (1977)
  • Strange Planet (1978)
  • Ancient Man: A Handbook of Puzzling Artifacts (1978)
  • Mysterious Universe: A Handbook of Astronomical Anomalies (1979)
  • Unknown Earth: A Handbook of Geological Enigmas (1980)
  • Incredible Life: A Handbook of Biological Mysteries (1981)
  • The Unfathomed Mind: A Handbook of Unusual Mental Phenomena (1982)
  • Lightning, Auroras, Nocturnal Lights, and Related Luminous Phenomena (1982)
  • Tornados, Dark Days, Anomalous Precipitation, and Related Weather Phenomena (1983)
  • Earthquakes, Tides, Unidentified Sounds, and Related Phenomena (1983)
  • Rare Halos, Mirages, Anomalous Rainbows, and Related Electromagnetic Phenomena (1984)
  • The Moon and the Planets (1985)
  • The Sun and Solar System Debris (1986)
  • Stars, Galaxies, Cosmos (1987)
  • Carolina Bays, Mima Mounds, Submarine Canyons (1988)
  • Anomalies in Geology: Physical, Chemical, Biological (1989)
  • Neglected Geological Anomalies (1990)
  • Inner Earth: A Search for Anomalies (1991)
  • Biological Anomalies: Humans I (1992)
  • Biological Anomalies: Humans II (1993)
  • Biological Anomalies: Humans III (1994)
  • Science Frontiers: Some Anomalies and Curiosities of Nature (1994)
  • Biological Anomalies: Mammals I (1995)
  • Biological Anomalies: Mammals II (1996)
  • Biological Anomalies: Birds (1998)
  • Ancient Infrastructure: Remarkable Roads, Mines, Walls, Mounds, Stone Circles: A Catalog of Archeological Anomalies (1999)
  • Ancient Structures: Remarkable Pyramids, Forts, Towers, Stone Chambers, Cities, Complexes: A Catalog of Archeological Anomalies (2001)
  • Remarkable Luminous Phenomena in Nature: A Catalog of Geophysical Anomalies (2001)
  • Scientific Anomalies and other Provocative Phenomena (2003)
  • Archeological Anomalies: Small Artifacts (2003)
  • Archeological Anomalies: Graphic Artifacts I (2005)
Wikipedia This page uses content that though originally imported from the Wikipedia article Wikipedia:List of unsolved problems in physics might have been very heavily modified, perhaps even to the point of disagreeing completely with the original wikipedia article.
The list of authors can be seen in the page history. The text of Wikipedia is available under the Creative Commons Licence.
Advertisement